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ABSTRACT
The distance dist(f,]Pn K) of functions f with certain singularities
’
from P := functions consisting of no more than K polynomial pieces of

n,K
order n 1is shown to be O(K-n), i.e., of the same order as dist(f,.‘lPn K)
’
for f € C(n). It is shown that this optimal convergence rate is realized by
approximations constructed with the aid of a simple adaptive algorithm.

The paper offers a very simple mechanism for the analysis of the error

achieved by such adaptive approximation schemes.

AMS (MOS) Subject Classifications: 41A63, 41A15, 41A25, 41A40, 41A55

Key Words: adaptive, piecewise polynomial, approximation, quadrature,
multivariate, degree of approximation

Work Unit Number 6 (Spline Functions and Approximation Theory)

EXPLANATION
In adaptive quadrature and other processes of piecewise polynomial approxima-
tion to some function f on some domain D, one subdivides the domain D
into cells Cl""'cK and constructs on each cell a polynomial approximant to
f. Computational efficiency both in the construction and in the use of such
approximations demands that a given error requirement be met with as small a
number K of polynomial pieces as possible. How such optimal subdivisions

might be chosen, is at present only fully understood in case D 1is an interval,

i.e., when approximating to functions of one variable. The paper proposes a
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very simple algorithm for developing an appropriate subdivision when f is
a function of many variables. The point of the paper is to show that the
error achieved by the piecewise polynomial approximation so constructed goes
to zero like K " as the number K of pieces becomes large, even when the
function f to be approximated behaves badly in places. Since one cannot
hope to do better than O(K-n) even when approximating a very smooth
(analytic) function, this shows that the algorithm realizes the potential of
piecewise polynomial functions to approximate well even to badly behaved

functions.
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AN ADAPTIVE ALGORITHM FOR MULTIVARIATE APPROXIMATION GIVING
OPTIMAI, CONVERGENCE RATES

Carl de Boor and John R. Rice

1. Introduction. We consider approximation from the class

n,K

of functions on (scme domain in) RN which consist of no more than K polynomial pieces
each of order n, 1i.e., of total degrce less than n. Approximation from Pn,K for
N > 1 was studied as early as 1967 by Birman and Solomiak [2]. Improvements of their
results were obtained by Brudnyi [3], and much of the work is presented in his survey
article (4]). Birman and Solomiak make use of a kind of adaptive partition algorithm in
some of their work, but their results do not contain ours nor ours theirs. Their results
go beyond the statement that dist(r,rn’x) = U(Kw“) for smooth functions. But, their
description of certain function classes for which such an optimal rate of approximation
is achicvable 1s in terms of certain moduli of smoothness. This description is difficult
to apply to a specific function not in C(n). By contrast, our analysis includes
explicitly functions of the form

f£(x) = g(x) dist(x,S)"
where g € C(n) and S 1is a smooth manifold. We show that the optimal convergence ratc
on DG RN can be achieved if a > mn/N - (N-m)/p, where m := dim(S) and BP—
approximation is used. We also show by an example that this restriction on a is in
general necessary for optimal convergence rates. These examples help to establish the
boundary of the class of functions which saturate piecewise polynomial approximation. Our
analysis is not restricted to piecewise polynomial approximation and includes, for example,

approximation by blending function methods.

We now describe the subject matter of our paper in some detail.
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We are interested in gauging the efficiency of an adaptive algorithm for the
approximation of functions, or of functionals on functions, on some domain D in RN.

The algorithm produces a subdivision of D into K nonoverlapping cells C.,...,C

1’ K
and, on each such cell Ci' an appropriate approximation.

The ingredients for the algorithm are:

al. a collection € of allowable cells.

a2. a (nonnegative) function E:C— IR, with E(C) giving the error (bound) for
the approximation on the cell C.

a3. an initial subdivision of the domain D into allowable cells.

a4. a division algorithm for subdividing any allowable cell C into two or more

allowable cells. C 1is called the parent for these latter cells.

The adaptive algorithm consists in producing, for each current subdivision, a new

subdivision by dividing some cell in the current subdivision a la a4, until E(C) S8
for all cells in the current subdivision, with ¢ some prescribed positive number.
Existing adaptive algorithms for quadrature or for piecewise polynomial approximation
(in one variable) are considerably more sophisticated than this simple algorithm. Yet
our simple algorithm allows us to analyze quite satisfactorily the efficiency of the
approximations produced by these more complex algorithms, i.e., the relationship between
the prescribed tolerance € and the number K = K(g) of cells in the final subdivision.
Here, we visualize the work of constructing the appropriate approximation on an
allowable cell to be the same for all cells so that the work for constructing t..e final
approximation is proportional to the number K of cells in the final subdivision. This
is still true even if we count all the intermediate approximations constructed as well,
since the total number of cells considered cannot be bigger than 2K. On the other
hand, €, or at times Ke, or some other function of €, measures the accuracy achieved
by the final approximation.
For the analysis of the relationship between K and ¢, we make the following

assumptions regarding € and E.




cl. € consists of bounded, closed, convex sets.

| c2. Cells are not too different from balls: Associated with each cell C € T

are two closed balls, bc and BC , for which bC €cc Bc , and
| n := inf diam(bc)/diam(sc) >N O
: cet
A c3. Invariance under scaling: If C € €T and c¢ is the center of its inscribed

ball bc , then, for all positive p,

| ) Cp s=c +tp(C-c)em.

each child C' of C produced by the division algorithm a4 satisfies
le'lzlel > 8 .
Here,. and below, |B| denotes the N-dimensional volume of B.
el. Monotonicity: C C C' implies E(C) < E(C').
The basic tool in our analysis is the number

(5) lzlc := [ dx/6(x,¢)
D

with
0(x,e) := inf{|c| : xe ce €, E(C) > €} .
We will show that

(6) k(e) < |E| /8"

following lemma gives a hint as to why (6) might hold.

il

"Proof". We have

K
I | ax/8(x,e) = |t:|c

i=l C

K K
k=5 lelslel = 3 [ awle,l <
i=l C, i

i=1

since 0(x,e) < |Ci| for all x € C,- ///

3=

Lenma 1. If (C,)} is a subdivision for D with E(C,) > ¢ for all

and, in this way, obtain quite explicit bounds on K for specific choices of E.

i,

dl. Parent and children have comparable size: For some positive B and all C €

The

then

T




Of course, this argument fails to establish that 1/6(.,e) 1is even integrable.
But, as we said, it gives a hint as to why (6) might be true.
In the next section, we derive various basic properties of the function 6 and the

number IEIe and prove (6).




2. The function 6. We begin our discussion of the function 6 by establishing

some properties of the allowable cells.

Lemma 2. For all Ce€ € and all y, the allowable cell Co = o 4 p(C =)

contains y for all p > 1 + dist(y,C)/radius(bC). Hlere, ¢ 1is the center of the

associated inscribed ball bc.

géggﬁ. Any such cell is allowable by c3, so that we only have to prove that vy € Cp
for the specified values of p. This is obvious for dist(y,C) = 0. Let dist(y,c) > O
and let b' be the ball around y of radius dist(y,C), and let d' be a point common
to € and b'. 1In the piane determined by d', y and ¢, let £ be the straight line
which intersects the segment [c,y], at the point d, say, and is tangent to bC s at
the point t, say. Then d € C by convexity, hence y is contained in the ball
c + }%“E‘%% (b

c ~ c)

But then, r:=dist(y,%) < dist(y,C), and, with t' the point of £ closest to y, the

two triangles (c,d,t) and (y,d,t') are similar. Therefore
ly -—al _ Iy - ¢| _ r o dist(y.C)
|a - ¢ [cle= t| radius (b,) = radius(bc)
and the lemma now follows since |y - c¢|/|]d - c| =1 + |y - al/|la -<|. 2//

Corollary. If ©0(x,e) < ® for som¢ x, then 0 is bounded on bounded sets.

tAE S 1IED 4 =

Proof. By assumption, there exists Cé€ € with xe€ C and E(C) > €. If now
y € ¢, then 6(y,e) < |c|, while, if y £C, then, by the lemma, vy € C,=c+plc=-c)
for p :=1 + dist(y,C)/radius(bC). But then, Cp 2 C (by convexity of C), hence,
by el, E(Cp) > E(C) > e. This shows that, for every vy,

N

(7 oty,e) < [c | =olc| . /17

A little more work proves that 6 is locally Lipschitz continuous.

Theorem 2.1. If 6(.,e) is finite at some point, then

(8) [6(x,e) - 6(y,e)| < Lix,y)|x - y|, all x,y.

with L bounded on bounded scts.

fa




Rroof. ket x € Ce @ with E(C) e and let r := radius(bc). By (7),

oty,e) - ] < " - nlcl

with
p =1+ dist(y,C)/r <1 + |y - x|/r ,
hence
N N-1 s
0 -vicl < -vjcl § o
e— n=1l
N-1 o
<y - xldela™ T o |y - xh™® R
n=1
By c2, le‘ §_|CI = IBC{ < ]hc|/ﬂN while |bC| = rNconstN. Therefore
ICI/IN < constN/BN and r < (|C|/constN)l/N, showing that
oly.e) - |c| < " - 1c] <k elily - xDly - x|

for some function FN which depends only on N and is monotone increasing in its two
arguments. By taking the infimum over all such C, we get

6(y,e) - 6(x,€) iFN(e(x,c).Iy -xDly - x|,

which proves (8) with L(x,y) := FN(max{O(x,C),O(y,C)},IY i xI). But such L is
bounded on bounded scts by the corollary to Lemma 2 and the monotonicity of FN. f1r
Corollary. 1f G C K'  is bounded and m, := inf .0(x,e) >0, then 1/6(.,c)

is Lipschitz continuous on G.

1t is obviou; that 0(x,*) is monotone (even if E were not). Further, one
would erpect limeﬁoﬁ(x,t) = 0 for each fixed x, but this need not happen. Consider,
e.g., the case when N =1, € consists of all closed intervals, and E(C) = diStm,C(f'rl)
with f the step function having just two jumps, both of positive size 2, at -1 and
l, say. Then

E(C) = number of jumps of f contained in C

Therefore, 6(x,e) 1is infinite for ¢ > 2. Further, for 1 < e < 2,

|ix,11] = x| + 1 if x < =1y
0(x,e) = ¢ |(-1,11] = 2 i 1 e€xn <€),
fl-1,x)] = x+ 1 §if 1 <x.




Finally, for 0 < e <1,
6(x,e) = dist(x,{-1,1} .

Note that the failure of 0(x,e) to go to zero with € implies, because of (6),
unusually good approximation rates possible. This will be taken up again in Section 5.

The example also illustrates the possibility that, even for positive €, 6(-,€)
may vanish at some points. In such a case, though, our algorithm will not terminate
since then, by the monotonicity of the error E, E(C) > € for all C containing a
point x with 6(x,e) = 0. Since 6(y,e) cannot grow faster than constly = xl near
such a point, by Theorem 2.1, it follows that / dy/0(y,e) 1is infinite for any G

G
containing x. Thus, (6) holds trivially in case 0(x,e) = 0 for some x € D, both

sides then being infinite for all small €.
We are now ready to prove (6).

Theorem 2.2. Let (Ci)i be a subdivision of D produced by the adaptive algorithm

from an initial subdivision (Ci) with E(C?) > €, all i. Then, with 8 the constant

in assumption 41,

(6) K < 'E'C/B g

Proof. By assumption, 8(-,e) is finite everywhere and, since the algorithm
stopped, 1/6(-,€) must be finite everywhere in D. Hence, by Theorem 2,1, 1/8(-,¢)
is continuous on D (and positive), thus integrable, and

(9) for all C € €, [ ax/6(x,e) = lcl/ex .e) for some x € C
c

Now, for each i, 1let Ji be the parent of Ci (in the sense of a4). Then E(Ji) e €y
therefore 0(y,e) < lJiI < ICi]/B, using d1, for all ye J . Hence

K .y E .3 K

k=Y ledzlc, ] <8 ¥ e l/oix, o) =81 § [ axsex.e) = el /8 .

% i o S " i C, : €

i=1 i=1 i i=1 Ci
which finishes the proof. ///

We will show in many specific circumstances that, as ¢ » 0, both K = K(¢) and

'Elc go to infinity at the same rate, so there is then no doubt as to the sharpness
of (6). Still, it is nice to know in general whether the two quantities are comparable.

For this recason, we now prove a converse inequality.




Theorem 2.3. Suppose 1/6(.,e) is Riemann integrable uniformly in €. €.

- . +
there exists w with w(0') = 0 so that for any subdivision (Ci) of the bounded

domain D and choice of points X, € e,
gt

Ié ax/8(x,e) - I e /o, e < wmax Jc, DlE] , an1 e

Then, for any subdivision (Ci)f

(10) (1 - w([p]/K)) |E[_ < const

of D with E(Ci) < € gll i,

K .
N,B,n

Hence, if limc+ox(e) = o, then lE]E and K(e) approach infirnity at the same rate.

For the proof, we need the following lemma.

Lemma 3. If C€ € and E(C) < €, then, at the center X of the inscribed ball

bc.gg_r.c’
11) : B(XC.C) = (n2/2)N|C|

Proof. If X, € C' € € with circumscribed ball B and [BC,I < Ibcl/PN, then

(ol

€' CB., Cb., and so E(C') < E(b) < E(C) < €, by el. Hence, x,€¢ C'e € and
E(C') > ¢ implies that lbcl/z" < |B'|, while, by c2,
~ x \ . o
€] < IBal < Ioal/m™ < |€]/n" for a1 ée @ .
{ N N Al L} N o ~ 1 -
Therefore, |c|(n/2) i»!bCI/Z S IBC | < lc [/n , and (11) now follows since C' was
arbitrary. 2L/

Proof of Thecorem 2.3. Let (Ci)i

be any subdivision for D with E(Ci) S ey all

i, and let X, be the center of the ball bC inscribed in the cell Ci’ all i
i
Then, by Lemma 3 and the assumption on uniform Riemann integrability, we have

| v

K
et ) e, 170t

1 b bied
K = (a4l (7 (a8
i=1 H o 3=1

i

(2/n2)"[lslC + ( E ICil/G(xi.t) = le[tl}

i=1

v

2N : :
/710 - wimax, ¢ )I]E[_ .

There is, of course, no guarantee that maxi[Ci[ + 0 as € =+ 0. Still, we may
refine our subdivision sufficiently while keeping the number of its cells within O(K)

as follows. Starting with the subdivision (C,)¥

iy under discussion, we carry on with




Ll
the adaptive algorithm until a new (finer) subdivision (Ci)f is reached with

maxi,C£| < ID[/K. Then, the parent of each new cell must have had volume greater than
ID[/K. hence there must have been less than K such parents, and each such parent
could not have had more than 1/8 children, by dl. Consequently, K' < (1 + B-I)K (in
particular, the algorithm must have stopped), and from our earlier argument, now applied
to the refined partition (C;),
a+shro ks 2ehNu - wiolmorlel . s
We conclude this section with a short discussion of our error measure

le] = f ax/8 (x,€)
€ D

. . =1 ; : ;
IEIE increases with ¢ and, usually, llms_)ollﬂ[F = o, JIn particular instances, we

are able to state quite precisely how lE]c goes to infinity with c'l.
In general, ]-ig is monotone, i.e.,

(12) E < F implies [Elc < !V{£

Also, lﬁie = &JE‘GC for o > 0. Finally,

(13) ) Flzc < B ¢ ]F}c

For the proof of (13), note that for any C€ € with (E + F)(C) > 2¢, we must have

max{E(C) ,F(X)} > €, hence Op,p (x:2¢) > min{0 (x,e), 0.(x,e)}, and so

S B0 ST W i TR <
|E + I~[2C < 1{ max{eE(x'(), eb‘(x,t.)}dh < ]h]g + I}[E




In this section,

3. _An example: Best approximation in Lp[a,b] from Pn,K‘
we bound IEIF for a specific choice of E in order to illustrate the use of
Theorems 2.2 and 2.3.

We are given a function f on some interval [a,b], and f 1is in c" on
[a,b]\{s}. But we know that
(15) lf(n)(x)[ :_constflx - s(a-n

for some a with ap > -1. We intend to approximate f from TP i.e., by piecewise

n,K'
polynomial functions consisting of at most K polynomial pieces, each piece of order n,

i.e., of degree less than n. We take the Ib~norm
b - 1/p
loll ==/ lae|Pax
p a

as our measure of function size. Our assumptions on f then imply that f € Lp[a,b].
Rice [8] has shown some time ago that, for such an f,

dist (£, ) = O(K ")
p n,K

We are about to reprove this result. 1In fact, we will prove that the approximation to

such a function f constructed by the adaptive algorithm approaches f at the rate O(K-n).
As collection € of allowable cells we choose all finite closed intervals on IR.

Thus, c¢l, c2, c3 are satisfied, and n =1 in c2. For the division algorithm a4, we

take interval halving, so dl is satisfied with B8 = 1/2.
Ideally, we would take for the error measure on the interval C the distance of

f c from Pn,

Bf(C) 2= dist;p C(f,an) 2

'

But it is simpler, and corresponds better to actual practice, to work with some bound

E(C) for Ef(C). Such a bound we now derive.

If f£€ Cn(C) for some interval C C [a,b], then dist (f,Pn)

p.C
< constnllf(n)”p C|C|n+1/p. Thus, with our assumption (15), we have Ef(C) < const_ F(C),
' N
with
- 41
(16) F(O) := aist(s,00% " |c|™P, a1 cC (a,b)
=10-

l
1
|
|
;
|
:
!




for such C. Note that F(C) = in case s € C if, as we assune,
a<n .,
Hence, for such C, and for C "near" s, we necd an alternative bound. If s is

not in the interior of C, e.g., C = [u,v] with v <s, then we have

: x
— j % n-1
stek = § P - wine s | & - 0" maerom - 11
j<n u
and so
v o ox 1/p
dist (£, ) < const (f [/ |x-¢" Ly tn) (t)at|Fax
p,C n = n
u
But, by (15),
x X
I x- 9™ (tyae| < const o f lm-gl® T ™
u By
= (o il
< _ c
<. <:onstn'f f [s t[ dt
u
< const |s = xla .
= n. £
Therefore,
1/p v
) +
dist {_(Y,I: “) twnrt([ ':; - Xla{dx} < COnFtI(:; - x)“ 1/p ul
P C
This shows that, for such C, dist K, ) < const G(C), with
p.C n - f.,n
g a+l/p
(17) G(C) := (dist(s,C) =+ IC') /}, all CS [a,Db)
Finally, if the singularity s lies in the interior of C, then the error might

1/ s
be as bad as constflvl P without additional hypotheses on f. Hence, if a > O,

then we assume that dist (f,P ) < const G(C) also for C with s € int(C).
et p.,C n ~ n,f

To summarize, we have

(18) i Ef frconstn,fE 1= constn'f min{F,G} ,
with F and G given by (16), (17). Both F and G are monotone, and continuous

where they are finite, and F(C) = ® implies G(C) < . Hence E is monotone and

continuous. Extending E to all of € by

-11-




E(C) := E(C N [a,b])
clearly changes nothing in this.

Proposition 3.1. For the function E defined in (18),

- +
|E|c < const € it fp)
Proof. For each x € fa,b], let Cx be an interval with x € Cx and lcxl = 8(x,€),
hence E(Cx) = €. Such surely exists for all sufficiently small € by the continuity

of E. Then (‘xg [a,b].

If now dist(s,c ) < [C [, then

: oL 4 vatl
F(C ) = dist(s,C ) nIC |n i ke | /P
x x x = A
while, for any C,
+
cc) > |c|**P .
! . 5 2 : : at+l/p

Therefore, dlSt(S,Cx) < chl implies that e > lcx[ + hence

|s - x| < dist(s,C)) + ]Cx| 5 2|Cx| = 251/(u+1/p)‘ This shows that

A := {x € [a,b] : dist(s,C ) < [Cxl}

has IAI = 4C1/(a41/p)_ Since
shiep for x € A ,

€ < G(C,) :,(2ch|)

it follows that

J ax/e(x,€) < |al2c™Y/(@H/P) . g
A .
i = +
On the other hand, since € < F(C)) = dist(s,cx)Ol n[cxln YP,  ue have
1/ (n+1/p)

1/6(x,6) = 1/l | < @ist(s,c )% "/e)

and so, as |s - x| f‘dist(s.Cx) + le[ < 2dist(s,Cx) for x ¢ A,

b
[ dax/6 (x,€) C-l/(n+1/p) f (u—n)/(n+1/p)dx

\A a

=1 v
[ Fnelip const .
== a,b,a.,p

| A

(s - x|/2)

Thus

b
IEIC = ! dx/0(x,e) = (I + [yax/e (x,¢) < 8 + const € A AR

a A \A

which finishes the proof. (74

-12-




1t follows with Theorem 2.2 that, for such a function £, the adaptive a]gofithm

working either with Ef or with the bound conﬂtn fE for it, produces an approximation
’

€E P hi
g - to f for which

p p-1/(n+1/p)

]lf 7 g“i < Ke® < const ¢ pas intlip)

= const ¢ '

. . L X + :
while, again by the proposition, e /a1 /p) < tonst/f(dx/@(x.c)) < const/K. This shows

that then

n/(utl/p) < const X
oo L

|If = gllp < const €
the promised bound.

Note that the argument also covers functions having finitely many singularities of

r
algebraic type no worsec than a. Precisely, if f = X fj, with fj € C(n)([a.b]\{sj})
1
and If;n)l = ajlx - Sj a—n' all j, then, from the argument for (13),
Y
S A
|Ff|rc E‘jZ] [aJ ch

with Hj 3= min{P,,Gj} and Fj and Gj defined by (16) and (17) with s replaced by
J
s.. Thus
3

=1/ (i1 /p) i (ra 1/ (011/D)

=1

< const

r
lEflL = jzl lEle/(raj)

Therefore, the adaptive algorithm produces approximations of optimal order for such
functions, too.

We have carried out this last argument in such detail in order to show that it will
not, by itself, support the analysis of an f with infinitely many singularities. For
this, a more refined version of (13) would be needed. Also, our argument comes close

to, but does not recapture, the result by Burchard [5-6] and others that

distp(f,l‘ ) < const Ehnllf(n)”

n,K 1/(n+1/p)

The typical error bound is

3 v ’ i H’l/p
dl..LpC(f,!n) < E(C) := F(C)|c]|

’

n+l/p

with F(C) ~ const |f(n)(c)|. Thus, € = F(Cx)|Cxl and so

[)l/(n*]/r)

1/6(x,c) = 1/|c | = wic,)/




Therefore

IE ] < |E|< = f dx/8(x,e) = e-l/(n+1/p) ] F(c )l/(n*l/p)dx
; & X
- +
~ ¢ 1/(n+1/p) ”f(n) “: ek o
with o := 1/(n+1/p). It is this last approximate equality which causes additional

technical

difficulties. Once it is settled, the argument finishes as above.

=14~
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4. The adaptive approximation of a function on R with singularities on a

smooth manifold. In this section, we investigate the approximation of a function f on
some bounded domain D in Iy when £ 1is in C(n)(D\S) for some smooth manifold S
of dimension m. We do not specify the collection € of allowable cells beyond the
requirements made in Section 1. Then we have

(n

(19) dist  (£,P) < const f ey |c|MP@iam O for cns =¢

with
f(n)(C) ;= sup max l(DYf)(x)l 2
x€ C |Y[=n

as is well known (seec, e.g., Morrey [7; p. 85]). Here, Pn stands for the collection

of polynomials on }3, of total degrec less than n. If now f were smooth enough,

< sz 72 K
i.e., if £(n)(D) < «, then, for any partition (Ci)l of D, we would get an

approximation g to f with

Sl o » P
[l £ qlllD : gdx.,tp’ccf,pn)
f(n)

A

{const (mN? X IC.I(diam N
n : i i

1

A

(const f{n)(D))p(max.(diam c)™MP|p|
n i i
hence

l]f = QIM) S ConStn,f,D maxi(diam Ci)n .

c ; d -n/N . &
This expression is of O(K / } 4df the Ci are chosen to be mcre or less uniform. We

intend to show that this same optimal order of approximation can be achieved even for a
function with certain singularities when the approximation is constructed by our adaptive
algorithm.

We now specify the singular behavior of f. We assume that

(20) f(n)(c) < const d:ist:(s,C)u-n .

f
3 ; N
Here and below, we take the distance between two sets in R to be the shortest
distance between them, i.e.,
dist(s,c) := inf |s - ¢| ,

SES
ceC

~15-




with |'| denoting Euclidean distance. Our assumption (20) does not imply much about

distp C(f.Pn) in case S N C # ¢. We make the assumption that

4 1/p- a :

(21) dist  ((£,P) < consty |c]*"P(aiam ) for
Consequently,

Ef(C) := dxstp'c(f,Pn) :constf
with

E(C) := min{F(C),G(C)}

F(C) := dist(s,0)® "(diam ©)"|c]|

g(C) := (dist(s,C) + diam ©)%|c]|

1/p

1/p 3

Finally, we assume that the m-dimensional manifold S of singularities of

in the following sense:

sl. It is possible to subdivide D into finitely many (nonoverlapping) pieces

Dl""'Dt so that, for each i, either dist(S,Di) >0 or

continuously differentiable map ¢, which maps the cylinder

N
2 2= fxE€ R ¢0<x, <1 for 4= ),....m;
m e S

one-one onto some neighborhood V‘.l of Di so that

else there exists a

dist(vi(x),s) B X x?)l/2 for all @i(x) € D,

j>m
Theorem 4.1. If f ¢ C‘n)

(22) ! n>a>mn/N- (N-m/p .,

(DNS)  and (20), (21) both hold for some

and the manifold S of singularities of f is smooth in the sense that it satisfies

sl above; then the adaptive algorithm, starting from a subdivision

Ci € ¢ and E(Ci) > €, all i, produces a subdivision (C
=1/ (n/N+1/p)

< cons
K < con tf €

Proof. The proof parallels the one for Proposition 3.1.

By Theorem 2.2.,

it

K < 8-1 f dx/0(x,c). To estimate 6(x,c), let x € Cx ¢ & with 6{x;c)

D
E(Cx) = €. By c2, there exists a positive const = const

1/N

N,n

const diam C > ICI > diam C/const, for all

-16-




A:={xe€D: dist(s,c ) < diam C } .

Then, for x € A,
L laiam Cxlalcxll/p > const [Cx|°/N+1/p
while, for any x,
c(c) > |aiam c_|%*c |*P > const |c |a/n+1/p )
x X X > =
Hence,

€ = min{F(C ),G(C)} > const |C_]|
x X = x

N/ (a+N/p)

This implies that € > const C  and so

dist (x,S) < dist(Cx,S) + diam Cx

(23)
3

< 2 diam €, < const cl/(u = for x€ A .

Further, for x € 2,
. +
€ £ G(C) = (2 diam C )QIC II/P < const |C |a/N e
- % - X x - x

which proves taat
(24) 1/0(x,e) = I/ICXI < const L—N/‘Q*N/p) for %€ A .
By assumption, sl holds, herce S has finite m-dimensional volume.

(24) combinc to give

[ ax/0(x, ) 'N/(nm/l,)lAI

A

< const ¢

-N/(aiN/p)c ,(N-m)/(aoN/p)

IA

const € onstq

const C—m/ s N/[‘)

const L_N/(a‘“/p)

| A

Next, since

€ < F(C.) < dist(s,c )™ ™(aiam ¢ )"|c|¥P
— X -~ X X

< const aist(s,c_)* "|c_|VN*1/P
- x x
we have
1/6(x,c) = 1/]Cx| % const(dist(S,Cx)u-n/t)N/(n’N/p)
Now, for x ¢ A, dist(x,S) < dist(S.Cx) + diam Cx < Zdist(s,cx). Thus,
(25) 1/0(x,¢) < ¢ N/ (/P ret (aist (x,8)72) (07N (0/N4L/R)

-17=

a/REL/p for x €& A .

Therefore,

(23) and

xfF & .




1t follows that
[ ax/e(x,e) < c—N/(n*N/p)const f dist(x,s)(G_D)/("/N*l/p)dx .
DNA D

Finally, we show that the last integral is finite under our assumptions. For this,
we make use of the smoothness assumption sl on S. For each Di in the postulated sub-
division of D, we have

[ dist(x,s)Yax < |p, |aist ,85)"
D,
1

with
Y := (@ = n)/(n/N + 1/p)

since y 1is negative by (22). Hence, f dist(x.S)de is finite in case dist(Di,S) > 0.

D.
1

if, on the other hand, dist(Di.S) = 0, then, by sl,

f aist (x,S) Ydx f ey x?)Y/zdet w;(x)dx
Py vt T
iy

const f ( z x?)Y/zdx
Zm j>m J

IA

]

const f- lxIde '
sN-m

s ; < k )
with Sk the unit sphere in IR, Since

1
f lx]de = constk f f ry*k-]drds ’

as
Sk Sk 0

we have f dist(x,S)de < o provided Y > -(N -m), i.e., provided
D,

i
(26) (@ - n)/(n/N + 1/p) >m - N .
But this is exactly the second inequality in (22). ///
Denote by
Pn,K

the collection of piecewise polynomial functions of order n consisting of no more than

K pieces, with the corresponding subdivision (Ci): of D with r < K taken from .

-18-




Corollary. Under the assumptions of the theorem,

3 = - -n/N
dlstp D(f,ln K) o(K ) .

. .

Proof. For each small enough €, we can find a subdivision (C.)K for D so that

i'1
4 ~N/ (n+N/p)
< E =
Ef(ci) L(Ci) < €, while K < const ¢ for some const c0nstf‘N' s M5

but independent of €. This shows that

(27) (I (nttidp) < const K1
and implies the existence of an approximation g € Pn K for f for which
’
Ilf = 9[]5 iy kP < const Cp-N/(n+N/p)
+ -
= const Cpn/(n N/p} < const K po/H ,

the last inequality by (27). ///

Theorem 4.1 and its Corollary only treat functions with a smooth manifold of

; . 2 :
singularities in the sense of sl. Thus, a function like f(x) := x; 5 xg on R is
not covered. But, by (13) and its obvious generalization, we clearly get
: -n/N : : s
dxstp C(f,Pn K) = O(K ) for any f which can be written as a finite sum of functions
’ ’
satisfying the assumptions of Theorem 4.1. Thus, the function f(x) = x? + xg is

covered. Still, Theorem 4.1 does not apply to functions like

fi{x) == (xlxz)“ for x € Eg %
Finally, Theorem 4.1 has the assumption that the domain D be representable as the
finite union ¢f nonoverlapping allowable cells. This is, offhand, a severc restriction.
E.g., we require all allowable cells to be convex, and, typically, € consists of just
hyperrectangles. But, if D 1is not so representable, then it is sufficient to start
off with some domain D containing D which is the union of nonoverlapping allowable
cells (Ci) provided we can extend f suitably to this larger domain D. The possibility
of such an extension is already implicit in the discussion of the error function E at
the beginning of this section. Our estimate (19) for distp'c(f,rn) makes sense only
if € Cdom f. Without trying to squecze the most gencral statement out of our arqguments,

we can say that Theorem 4.1 applies to the approximation of any function f on D which

can be suitably extended to some bounded convex domain D containing D. The definition

-19-




of E, offhand defined only for € C 6, is then extended to all C € € by
E(C) := E(C N 6), and the condition of Theorem 4.1 is relaxed to require initially
only a finite covering (C;) for D of allowable cells with E(Ci) > e, &1l 1.
Note that, .or m ¥ 0, (26) is stronger than the inequality
a > (m - N)/p
needed to conclude that f € LP(D). One might, for this and other reasons, raise the
question of whether (26) is necessary. We now show that (26) is necessary in general
n/N

to achieve the optimal approximation rate O(K )

Theorem 4.2. If m > 0, then there exist €, D, S and f satisfying all assump-

tions of Theorem 4.1 except that o is not an integer and satisfies

(28) -(N-m/p <a<mn/N- (N-m/p,
and, for this f,
. # -n/N
dlstp(f,]Pn'K) O (K )

Proof. We choose

N
S := {x€e R : x, = 0 for i > m}
and take
: a
f(x) := dist(x,S)
We choose D to be the unit cube {x € lgq: 0 < xi <1, all i} and take € to be the

collection of all scaled translates of D.

We claim that

a/N+1/p
.

(29) dist (f,P ) > const lc| for all Ce €, CNS#¢ ,

p.C
for some positive const independent of the particular C. For the proof, let

a
w:ny-—‘ RN:x*"Dx + s for some positive scalar p and some s € S. Then f¢¥ =p
while, for any g ¢ Pn, gy € Pn. Therefore, if g € Pn is a best mp-approximation

to f on Ce€ €, then

distp'c(f,lpn)p =£ l£x) - g(x) |Pax
= [ 0% (y) - glpy + s)|Polay
¢ Lo
ap+N .
>p dist  _, ({,Pn) .

pw " (C)

-20~-




" But since w-l(x) = p_lx + s' with s' = -s/p € s, this implies that

b
dist (£,P) = il P 1T 4 EE .
f P, " (C)

Associate now with each C € € a specific map ¢:x+> px + s for which s € S,

V-I(C) Ngt+g and Iv-l(C)I =1. Then p= C A/ and ¢—1(C) N s # ¢. Hence,
for all Ce€ T with CNs #9¢,
dise | (£,P) = | M Pgie (£, )
p.sw (C)
2 ,Cla/N+1/pconst

with
1
const := inf{distp cEP):ce,cns #o+cAas, || =11 .

If now const = 0, then, since distp C(f,Pn) is a continuous function of C on €
0 v

and the infimum is taken over a compact subset of €, we would obtaina Cé€ € with

ICI =1 for which flc € Pn, which is absurd since a 1is not an integer.
K g’ %
With (29) thus established, let (Ci)1 be any collection of nonoverlapping cubes

which cover S n D. Then, by (29),

errorp = Z distplci(f,Pn)p- const

1 1

|v

a/N)+1
p z lcil(la/ )4
1

while

v
—

m/N
E o, B 2

ol

since they cover S N D. But this implies that

K K 1/p
error > const inf{ Z IC.I(pG/N)+1: E IC.Im/N 2 é}
i=1 * 1
> const §
with
K K
Gp = inf{z lcilY $ 2 IC.I = 1}
i=1 =2t
and

Y := (pa + N)/m .

-21~-




“Since Y > 1 by the first inequality in (28), the last infimum is taken on when

Ici| = )/K; al} i. Thus

This proves that, for some positive const,

dist (f,P ) > const K(I-Y)/p
p.D T

-a/m+ (m-N) / (pm)

const K
# ok ™V,

since, by assumption (28), =-a/m + (m - N)/(pm) > -n/N. ///
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S. Superconvergence. In this section, we give one more application of Theorem 2.2,

this time to illustrate how it deals with superconvergence.
First, consider the step function f on R with just one jump, of size 1, say,

at some point X, € (-1,1). The function is to be approximated from Pl K in the

L. -norm. Clearly, the placement of just one breakpoint, at x

A would provide exact

ol
approximation. But we are dealing with an adaptive algorithm which only knows (a bound

for) the function E and does not know the point x We want to show that, even

£ 0"

without the exact knowledge of the jump point x our adaptive algorithm performs in

Ol
this case much better than the "optimal" rate O(K_l) would indicate.

It is easy to see that

.= i = i N
Ef(c) 2 dlStl,C(f'Pl) dlst(xo,m C)

for any particular interval C. Thus
0(x,e) = dist(x,xo) + £

and so

1
IEfIQ = [1 ax/(|x - xol Fe) = 21n(l/e) + Inl(1 + x5+ €)(1 - x  + €)]

Consequently, the adaptive algorithm produces a subdivision with
K < (2 1n(1/€) + const)/8

intervals for a total error of no more than

(30) Ke < ja (CETESUSERAR _ g SRR

In fact, the total error is < € since the approximation fails to be perfect only

in the one interval which contains X in its interior. Further, if interval halving

is used, i.e., B = 1/2, then, at each stage, only the interval containing xo is sub-

divided. Assuming X, to be in general position, i.e., X, ¥ {r2% : r,s € )}, the

-K -k Iin 2
= e

error with K intervals behaves therefore like 2 . Thus, the error goes

to zero even faster than our estimate O(e-K/4) in (30) would indicate.
As a second example, we consider nu-approximation from Pl K to the function
’
0
f(xl.x2) = (xl xz)*
_23_




. We take D to be the unit square and take for € all scaled translates of D. It is

now not possible to have f approximated exactly; still, it can be approximated better

than the "optimal" order O(K—l/z) possible for general smooth functions.
Let Cé€ €. If the line S := {x ¢ R2: X, = x2} intersects C at all, it cuts
it into a triangle T and another piece, and then Ef(C) = ]T[. Otherwise, Ef(C) = 0.

Thus, if x 1is the vertex of C farthest from S and h 1is its side, then

2
2(h - |x1 - x2|/2)+ for h < [xl - x2|
Ef(C)

2
le - x2| /2 for h > |x1 - x2|

This shows that, for |x1 - x2|2/2 < €, B(x,€) = h2 with h such that

- |x, - x,|/2% = /72, Thus,

1

. :
(Ye/2 + |x -x_|/2) if |x, - x |
8 (x,¢€) 1 2 1 2

2€ otherwise .

Consequently, 0(x,e) > 2¢ for all x, and so [E “ < |D|/(2€). But the resulting

N
estimate Ke < (const/(2¢))e = const for the total error is not too encouraging.

We get a sharper bound as follows. Set

A={xeD: |x -x)]| < Vo)

Then |A| S /3/3?, hence

[ ax/8(x,e) < |al/(2e) = 1,2

A

Also,

] dx/8(x,€) = f(#c/z et le = x2]/2)-2dx

D\NA

1 1/2 -2
<2f [ (/72 + s) “gasat < 16/V2c
0 /2

Thus |Ef|c el const//zz hence € < const/K2 for the number K of squares in the

partition constructed by the adaptive algorithm. The error achieved is therefore no

bigger than Ke < const/K, or, O(K-l) as compared to the "optimal" rate O(K-l/z).
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6. Algorithm realizations for smooth arvroximation. The obvious concrete realiza-

tion of the adaptive algorithm are for piecewise polynomial approximation such as
analyzed in Sections 3 - 5. Most of these realizations would produce discontinuous
approximations. This is perfectly acceptable for applications such as quadrature, i.e.,
Ll-approximation, or in situations where only the accuracy of the approximation matters.
Other applications require smooth approximations and, in one variable, this may be
achieved by either using a local approximation scheme that preserves smoothness (see

Rice [9] for two such methods) or else by "smoothing" the original discontinuous
approximation by “pulling apart the knots“. 1In principle, one can also “smooth" a
multivariate piecewise polynomial approximation, but it is not clear that one can do it
in practice. The simple mechanism of "pulling apart knots" is not available, and the
problem of carrying out some reasonable local “smoothing" on a piecewise polynomial
function on a nonuniform subdivision seems insurmountable.

The difficulty of preserving smoothness with piccewise polynomial approximations is

illustrated in Figure 1. Near the point A, the polynomial piece q = q(x,y) for

Figure 1. A subdivision of the unit square by quadrisection.

x,¥ <1/2 may remain’ fixed while squares above A are continually refined. Unless f
is exactly equal to q near A, the enforcement of continuity with q at A limits

the accuracy of the approximations obtained above A.
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There are four independent properties of an algorithm realization: localness,
accuracy, smoothness and shape preservation (of the cells) which we desire. The only
schemes we know which have all these properties are blending fuuction schemes such as
Coon's patches (see Barnhill [1] for a survey of such schemes in RZ). One may
interpret “"blending function" to mean interpolation to the interior of a cell of data
from all of the cell's boundary, i.e., the data functionals have values in RN-I. Thus,
only in Rl does one obtain ordinary piecewise polynomial approximation, using local
Hermite interpolation.

The analysis of Sections 1 and 2 applies directly to adaptive blending function
approximations and we conjecture that these are the only realizations of our adaptive
algorithm that produce smooth approximations in m” for N > 1.

Our.algorithm can be modified to include a constraint on the "generation gap"
between neighboring cells (recall the terminology of "parent" of a cell introduced in a4).
We say that a subdivision is r-graded if the difference in generations between neighboring
cells is at most r. A O-graded subdivision is uniform. One can easily construct
situations where this constraint makes the subdivision of one cell the cause for sub-
division of almost all the remaining cells. 1In general, a graded algorithm will produce
a larger K than our algorithm does. We conjecture, however, that this constraint does
not destroy the optimal rate of convergence obtain¢d in Section 4. 1In fact, it seems
plausible that (for almost all f) there is an r depending on £, D, E and the
local approximation scheme, but independent of €, so that all subdivisions produced
by the algorithm are r-graded.

We close by noting that adaptive tensor product algorithms can be devised which
preserve smoothness for piecewise polynomials, but they cannot achieve the optimal

convergence rate.
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